Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 114
Filtrar
1.
Int. microbiol ; 27(2): 459-476, Abr. 2024. graf
Artigo em Inglês | IBECS | ID: ibc-232293

RESUMO

Gellan gum (GG) has gained tremendous attention owing to its diversified applications. However, its high production and hence market cost are still a bottleneck in its widespread utilization. In the present study, high GG producing mutant of Sphingomonas spp. was developed by random mutagenesis using ethyl methylsulphonate (EMS) for industrial fermentation and identified as Sphingomonas trueperi after 16S rRNA and matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF–MS) analysis. The fermentation conditions such as pH, temperature, and inoculum ratio were optimized by one factor at a time (OFAT) followed by screening of medium components by the Plackett–Burman statistical design. The most critical nutrients were further optimized by response surface methodology for maximizing GG production. The effect of dissolved oxygen tension in bioreactor on cell growth, substrate consumption, GG production, and batch productivity was elucidated. The highest GG titer (23 ± 2.4 g/L) was attained in optimized medium at 10% inoculum (6.45 ± 0.5 log cfu/mL) under controlled fermentation conditions of pH (7), temperature (30 °C), agitation (300–600 rpm), and aeration (0.5–2.0 SLPM) at 22 ± 2% dissolved oxygen tension in a 10-L bioreactor. Kinetic modeling of optimized batch process revealed that logistic growth model could best explain biomass accumulation, while GG formation and substrate consumption were best explained by Luedeking-Piret and exponential decay model, respectively. Structural and physico-functional features of GG produced by mutant Sphingomonas spp. were characterized by HPLC, FTIR, NMR, DSC, TGA, GPC, SEM, and rheological analysis. The higher productivity (0.51 g/L/h) under optimized fermentation conditions suggests potential consideration of mutant and process for commercial utilization.(AU)


Assuntos
Humanos , Mutagênese , Sphingomonas , RNA Ribossômico 16S , Oxigênio , Fermentação , Polissacarídeos Bacterianos
2.
J Food Sci ; 89(4): 2232-2248, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38380698

RESUMO

Sugarcane juice is a popular beverage and is also processed to produce sugar. The polyphenol oxidase (PPO) in sugarcane juice causes enzymatic browning and makes the process of sugar production complex and cumbersome. Storage of sugarcane juice is also hampered by the high sugar content and rapid microbial fermentation. The present research assessed the potential of lemon juice (LJ) and ginger extract (GE) as natural inhibitors of PPO. Enzyme kinetics and the mechanism of inhibition of LJ and GE were studied. Primary investigation was carried out using molecular docking approach to assess the inhibitory potential of LJ and GE and to determine the nature of interaction between the enzyme and inhibitors. Extracts were used as inhibitors and studies revealed that both reduced the PPO activity. Subsequently, pure bioactive inhibitors such as ascorbic acid, citric acid, and 6-shogaol present in these natural extracts were used to study the mode of inhibition of PPO. Citric acid decreased PPO activity by lowering pH, while ascorbic acid was found to be a competitive inhibitor of PPO with a Ki of 75.69 µM. The proportion of LJ and GE required in sugarcane juice was optimized on the basis of browning index and sensory acceptance. Further, the sugarcane cane juice after inhibition of PPO under optimized conditions was spray dried and evaluated for reconstitution properties. The product formulated in the present study is a new and effective approach to address quality-compromising issues associated with long-term storage of cane juice.


Assuntos
Saccharum , Saccharum/química , Catecol Oxidase/química , Simulação de Acoplamento Molecular , Ácido Ascórbico , Açúcares , Ácido Cítrico
3.
Artigo em Inglês | MEDLINE | ID: mdl-38418582

RESUMO

Mixed culture cultivation is well renowned for industrial applications due to its technological and economic benefits in bioprocess, food processing, and pharmaceutical industries. A mixed consortium encompasses to achieve growth in unsterile conditions, robustness to environmental stresses, perform difficult functions, show better substrate utilization, and increase productivity. Hence, mixed cultures are being valorized currently and has also augmented our understanding of microbial activities in communities. This chapter covers a wide range of discussion on recent improvements in mixed culture cultivation for microbial bioprocessing and multifarious applications in different areas. The history of microbial culture, microbial metabolism in mixed culture, biosynthetic pathway studies, isolation and identification of strains, along with the types of microbial interactions involved during their production and propagation, are meticulously detailed in the current chapter. Besides, parameters for evaluating mixed culture performance, large-scale production, and challenges associated with it are also discussed vividly. Microbial community, characteristics of single and mixed culture fermentation, and microbe-microbe interactions in mixed cultures have been summarized comprehensively. Lastly, various challenges and opportunities in the area of microbial mixed culture that are obligatory to improve the current knowledge of microbial bioprocesses are projected.

4.
Int J Biol Macromol ; 257(Pt 2): 128689, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38092100

RESUMO

In this study, a composite hydrogel consisting of pea protein and konjac glucomannan (KG) was fabricated using three approaches, namely neutral, salt-set, and alkaline gelation. Hydrogels made from pea protein were brittle and weak. The addition of KG improved the elasticity and water holding capacity of the pea protein hydrogels. Concomitantly, a decrease in syneresis rate and swelling of the composite hydrogels was observed. The alkaline-set hydrogels exhibited the highest resilience to strain. Thixotropicity was found to be less pronounced for salt-set hydrogels. Sulphate had a greater positive effect on the structural recovery and negative effect on hysteresis area than chloride due to the greater salting-out effect of the sulphates. The addition of KG facilitated the formation of an interconnected structure with limited mobility of biopolymer chains. A sharp increase in G' and G" during the temperature ramp indicated the predominance of hydrophobic interactions towards the aggregation of biopolymers. The infrared spectra of the hydrogels revealed a change in secondary structure of proteins on addition of KG. A controlled in vitro release of riboflavin was observed in neutral and salt-set hydrogels. The alkaline-set hydrogels exhibited a prolonged gastric retention time, thereby establishing in vitro antacid activity in the gastric environment.


Assuntos
Hidrogéis , Proteínas de Ervilha , Hidrogéis/química , Mananas/química , Elasticidade
5.
Bioorg Chem ; 143: 107046, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38141332

RESUMO

This study was aimed at investigating the neuroprotective potential of a co-extract obtained by supercritical fluid extraction (SFE) of turmeric powder and dried coconut shreds against aluminium chloride (AlCl3)-induced Alzheimer's disease (AD) in male Wistar rats. Fifty animals were allocated to five groups, which received saline (vehicle control, group 1), a combination of saline and aluminium chloride (AlCl3) (disease control, group 2), coconut oil (COO) (SFE extracted, treatment group 3), turmeric oleoresin (Cur) (SFE extracted, treatment group 4) and SFE co-extract of turmeric powder and coconut shreds (CurCOO) (treatment group 5). Animals were subjected to behavioural evaluation. In addition, the hippocampal section of the brain from all groups was subjected to biochemical, molecular and histopathological evaluations. The results showed CurCOO administered intranasally improved cognitive abilities, reversed histological alterations in the brain, reduced hippocampus inflammation studied through proinflammatory cytokine markers like TNF-α and IL-6 as compared to the disease control group. The impact of CurCOO on preventive neurodegeneration was also observed through a reduction in protein transcription factor NF-kB in the treated group 5 as compared to a disease control group. The effect of intranasal delivery of CurCOO on the neurons responsible for memory consolidation was evident from low acetylcholinesterase (AChE) enzyme activity in the treated groups with respect to AlCl3 induced group. Summarily, the results demonstrated intranasal delivery of CurCOO to show better efficacy than Cur and COO in preventing neurodegeneration associated with AlCl3 induced Alzheimer's disease.


Assuntos
Doença de Alzheimer , Ratos , Masculino , Animais , Cloreto de Alumínio , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Compostos de Alumínio/efeitos adversos , Compostos de Alumínio/metabolismo , Cloretos/efeitos adversos , Cloretos/metabolismo , Curcuma , Pós/efeitos adversos , Pós/metabolismo , Ratos Wistar , Neuroproteção , Acetilcolinesterase/metabolismo , Cocos/metabolismo , Encéfalo/metabolismo
6.
Artigo em Inglês | MEDLINE | ID: mdl-37821732

RESUMO

Growing toxicity of nanomaterials to aquatic organisms is a major area of concern as it is destroying the carefully evolved aquatic ecosystem and food web. Copper oxide nanoparticles (CuONPs) are among the top industrially manufactured nanomaterials having multifaceted applications in medicine, agriculture, energy, water technology, and other areas. However, reports on detailed scientific understanding behind toxic effects of CuONPs on aquatic organisms are scant. The present work reports on the interaction of CuONPs of 10 ± 05 nm with an ecologically significant aquatic species, Moina macrocopa, at morphological and enzymatic levels. CuONPs were found to be severely toxic just within 48 h of exposure as seen from the lethal value (48 h LC50) of 0.137 ± 0.002 ppm. Profiling of enzymatic toxicity biomarkers indicated variable response of CuONPs on selected enzymes of M. macrocopa at two sub-lethal concentrations (0.013 to 0.039 ppm). While the activities of acetyl cholinesterase and digestive enzymes (trypsin, amylase) were found to be significantly (p < 0.001) lowered after exposure to CuONPs, the ß-galactosidase activity was completely inhibited. Among the antioxidant enzymes that were assayed, superoxide dismutase and glutathione-S-transferase activity was found to increase (p > 0.001), while that of catalase decreased (p > 0.001, < 0.05) with increase in exposure to CuONPs. An upsurge of several folds was seen in the activity of alkaline phosphatase after exposure to CuONPs as compared to the control group. CuONPs accumulated in the gut region of M. macrocopa which provided an ideal environment for CuONP to interact and alter the enzymes in M. macrocopa. This report highlights the use of enzymes as sensitive biomarker to detect toxicity of trace amount of CuONPs in a very sensitive non-target crustacean species found in water bodies.

7.
Microbiol Res ; 275: 127449, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37454427

RESUMO

Probiotics are viable microorganisms that provide beneficial health effects when consumed in adequate quantity by the host. Immunomodulation is one of the major beneficial effects of probiotics that is a result of the colonization of probiotic microorganisms in the gut, their interaction with the intestinal cells, production of various metabolites and by-products. The last few years have displayed an increasing number of studies on non-viable probiotics (paraprobiotics) and microbial by-products (postbiotics) that prove beneficial to human health by providing positive immune responses even in the inactivated form. The increasing number of research studies compare the effects of viable and non-viable probiotics, their by-products, and metabolites. This review focuses on the ability of different types of paraprobiotics and postbiotics to modulate the immune system. A majority of paraprobiotics are developed from Lactobacillus and Bifidobacterium strains. The postbiotic components that modulate the biological reactions include lipoteichoic acids, bacteriocins, short-chain fatty acids, peptidoglycan, and exopolysaccharides have been reported. We have reviewed paraprobiotics and postbiotics that are commercial as well as in research. Paraprobiotics and postbiotics can be a possible replacement for live probiotics for immunocompromised people. Paraprobiotics display an active role in maintaining T-cell mediated immunity and have been shown to treat colitis. Postbiotic components exhibit properties of pro and anti-immune, anti-tumor, anti-microbial, antioxidant, and anti-biofilm. More research is required on the efficient conversion of probiotics to paraprobiotics, the isolation and purification of different postbiotics, and stability studies during the shelf life. The majority of the articles report the effects of direct ingestion of different '-biotics' without blending in any food product.

8.
Int Microbiol ; 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37495894

RESUMO

Gellan gum (GG) has gained tremendous attention owing to its diversified applications. However, its high production and hence market cost are still a bottleneck in its widespread utilization. In the present study, high GG producing mutant of Sphingomonas spp. was developed by random mutagenesis using ethyl methylsulphonate (EMS) for industrial fermentation and identified as Sphingomonas trueperi after 16S rRNA and matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF-MS) analysis. The fermentation conditions such as pH, temperature, and inoculum ratio were optimized by one factor at a time (OFAT) followed by screening of medium components by the Plackett-Burman statistical design. The most critical nutrients were further optimized by response surface methodology for maximizing GG production. The effect of dissolved oxygen tension in bioreactor on cell growth, substrate consumption, GG production, and batch productivity was elucidated. The highest GG titer (23 ± 2.4 g/L) was attained in optimized medium at 10% inoculum (6.45 ± 0.5 log cfu/mL) under controlled fermentation conditions of pH (7), temperature (30 °C), agitation (300-600 rpm), and aeration (0.5-2.0 SLPM) at 22 ± 2% dissolved oxygen tension in a 10-L bioreactor. Kinetic modeling of optimized batch process revealed that logistic growth model could best explain biomass accumulation, while GG formation and substrate consumption were best explained by Luedeking-Piret and exponential decay model, respectively. Structural and physico-functional features of GG produced by mutant Sphingomonas spp. were characterized by HPLC, FTIR, NMR, DSC, TGA, GPC, SEM, and rheological analysis. The higher productivity (0.51 g/L/h) under optimized fermentation conditions suggests potential consideration of mutant and process for commercial utilization.

9.
Food Chem ; 423: 136304, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37159969

RESUMO

Gel based formulations offer an opportunity to fortify bioactives in food. However, a comparative evaluation of gel systems is scantly available. Thus, this study intended to evaluate the impact of various gel formulations (hydrogel, oleogel, emulsion gel, bigels of different compositions) on the delivery and antioxidant activity of lutein. Ethyl cellulose (EC,15 %w/w) and guar-xanthan gum mixture (1:1,1.5 %w/w) was used as oleogelator and hydrogelator, respectively. The microscopic evaluation indicated an oil-based continuous-phase for bigel with 75% oleogel. An increase in oleogel content enhanced textural and rheological properties. An increase in hydrogel composition (25%-75%) of bigel improved the lutein release (70.4%-83.2%). The highest release of lutein was recorded for emulsion gel (84.9%) and bigel with 25% oleogel (83.2%). The antioxidant activity was comparatively lower in gastric medium than simulated intestinal fluid. It could be inferred that the gel matrix significantly affected the lutein release, antioxidant profile, physiochemical and mechanical characteristics.


Assuntos
Antioxidantes , Luteína , Preparações de Ação Retardada/química , Emulsões , Hidrogéis/química
10.
J Food Sci ; 88(5): 2104-2129, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37020405

RESUMO

The present study was aimed at curating a porous KCl crosslinked hydrogel with purified subabul galactomannans (SG) from the defatted seeds of Leucaena leucocephala (subabul) and κ-carrageenan (κC) by inducing whey protein isolate (WPI). WPI showed 345% foam overrun and minimal foam drainage (%) at 70°C when whipped for 5 min at pH 6.8 in the hydrogel prepared with 6.5% w/v SG + 1% w/v κC + 0.63% w/v KCl + 2% w/v WPI. The SG and WPI incorporated porous hydrogel (SGWP) showed maximum G' (3010 Pa) and frequency independence (>30 Hz) at 65°C. NMR (1 H), scanning electron microscopy, and thermal characterization of SGWP showed a crosslinked microporous gel network formation. SGWP had high water uptake rate (Q) (432%) at 45°C. The stability of SGWP at neutral pH and high temperature (65°C) added an impetus to this study as it could be used for a wide range of applications. Hence the protein-polysaccharide complexation improvised the functional properties of the porous hydrogels. The results suggested a possible valorization of galactomannans from subabul, a forest resource, into a porous hydrogel suitable as a matrix for delivery of bioactive(s) or an aerogel for multifarious industrial applications. PRACTICAL APPLICATION: A porous hydrogel is defined as a solid, or collection of solid bodies, with sufficient open space to enable a fluid to pass through or around them. Leucaena leucocephala seed (forest resource) galactomannans are non-starch polysaccharides having weak gelling capacity. Whey protein isolates (WPI) are a dairy industry byproduct having excellent foaming properties. Incorporation of WPI in the hydrogel prepared with subabul galactomannan and κ-carrageenan using KCl as a crosslin could form a stable porous structure having high water uptake rate (Q) at neutral pH and elevated temperature. The hydrogel so developed could be a step toward circular economy.


Assuntos
Fabaceae , Polissacarídeos , Proteínas do Soro do Leite/química , Carragenina/química , Porosidade , Hidrogéis , Materiais Biocompatíveis , Sementes , Água
11.
Bioprocess Biosyst Eng ; 46(5): 645-664, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36826507

RESUMO

The present study describes the chemical modification of α-amylase using succinic anhydride (SA), phthalic anhydride (PA) and a novel modifier viz. 2-octenyl succinic anhydride (2-OSA). SA-, PA- and 2-OSA-α-amylases displayed a 50%, 91% and 46% increase in stability at pH 9, respectively; as compared to unmodified α-amylase. PA-α-amylase showed a significant increase in Ea and ΔHa#, and a concomitant decrease in ΔSa#. The modified α-amylases exhibited improved thermostability as reflected by significant reductions in Kd and ΔSd#, and increments in t1/2, D-, Ed, ΔHd# and ΔGd# values. The modified α-amylases displayed variable stabilities in the presence of different surfactants, inhibitors, metal ions and organic solvents. Interestingly, the chemical modification was found to confer resistance against inactivation by Hg2+ on α-amylase. The conformational changes in modified α-amylases were investigated using intrinsic tryptophan fluorescence, ANS (extrinsic) tryptophan fluorescence, and dynamic fluorescence quenching. Both intrinsic and extrinsic tryptophan fluorescence spectra showed increased fluorescence intensity for the modified α-amylases. Chemical modification was found to induce a certain degree of structural rigidity to α-amylase, as shown by dynamic fluorescence quenching. Analysis of the CD spectra by the K2d method using the DichroWeb online tool indicated evident changes in the α-helix, ß-sheet and random coil fractions of the α-amylase secondary structure, following chemical modification using anhydrides. PA-α-amylase exhibited the highest productivity in terms of hydrolysis of starch at 60 °C over a period of 5 h indicating potential in varied biotechnological applications.


Assuntos
Anidridos Succínicos , alfa-Amilases , Anidridos Succínicos/química , Triptofano , Amido/química
12.
Bioresour Technol ; 359: 127498, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35724911

RESUMO

Multiple microbial exopolysaccharides have been reported in recent decade with their structural and functional features. Gellan gum (GG) is among these emerging biopolymers with versatile properties. Low production yield, high downstream cost, and abundant market demand have made GG a high cost material. Hence, an understanding on the various possibilities to develop cost-effective gellan gum bioprocess is desirable. This review focuses on details of upstream and downstream process of GG from an industrial perspective. It emphasizes on GG producing Sphingomonas spp., updates on biosynthesis, strain and media engineering, kinetic modeling, bioreactor design and scale-up considerations. Details of the downstream operations with possible modifications to make it cost-effective and environmentally sustainable have been discussed. The updated regulatory criteria for GG as a food ingredient and analytical tools required to validate the same have been briefly discussed. Derivatives of GG and their applications in various industrial segments have also been highlighted.


Assuntos
Sphingomonas , Reatores Biológicos , Fermentação , Polissacarídeos Bacterianos/química , Sphingomonas/química , Sphingomonas/metabolismo
13.
Carbohydr Polym ; 287: 119355, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35422305

RESUMO

The ubiquity, low cost and biocompatibility make polysaccharides a material of choice in food, pharmaceutical, cosmeceutical, textile and paper industries. From the age-old process of pectin addition in jams to the latest developments of bio-nanocomposites with polysaccharides in biosensing, developments in applications of polysaccharides and their derivatives have gone hand-in-hand with the technological progress. This review gives an overview on the recent advances in the use of microbial exopolysaccharides, polysaccharide modifications, conjugation with non-polysaccharide biomolecules, their applications in nutraceutical/drug delivery and their therapeutic potential along with gelled matrices, nanotechnology and packaging advances. The safety, toxicity and potential biological activities such as immunomodulatory, antioxidant, anticancer, hypocholesterolemic, hypoglycemic and prebiotic have been thoroughly reviewed. The ability of polysaccharides and their derivatives in their nano forms coupled with their unique physicochemical properties has been exploited innovatively by researchers globally for applications such as delivery systems for drugs/nutraceuticals/phytochemicals among many others which are also discussed.


Assuntos
Antioxidantes , Polissacarídeos , Antioxidantes/farmacologia , Fenômenos Químicos , Sistemas de Liberação de Medicamentos , Preparações Farmacêuticas , Polissacarídeos/química , Polissacarídeos/farmacologia
14.
Appl Biochem Biotechnol ; 194(5): 1981-2004, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35006550

RESUMO

ß-Mannanase capable of hydrolyzing ß-1,4-linkages in guar gum was immobilized as cross-linked enzyme aggregates (M-CLEAs). The aggregation and cross-linking process was optimized by response surface methodology (RSM) for maximum activity. The resulting M-CLEAs were characterized by FTIR, DSC, SEM, and SDS-PAGE. The M-CLEAs showed higher pH stability, improved thermal and storage stability, and reusability than free ß-mannanase. For example, M-CLEAs were stable over broader pH range (5.5-8.5) with highest relative of activity of 98.17% at pH 6.5 and retained almost double activity than free mannanase at 50 °C after 4 h. Moreover, Km and Vmax of M-CLEAs were altered significantly, with a 1.5-fold increase and 0.98-fold decrease, respectively, than free ß-mannanase. The prepared M-CLEAs could hydrolyze native guar gum (MW = 588,147 Da) to yield partially hydrolyzed guar gum (PHGG) (MW = 8023 Da).


Assuntos
Enzimas Imobilizadas , beta-Manosidase , Estabilidade Enzimática , Enzimas Imobilizadas/química , Galactanos , Concentração de Íons de Hidrogênio , Mananas , Gomas Vegetais
15.
Food Chem ; 373(Pt A): 131400, 2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-34742044

RESUMO

The use of phytochemicals for nutritional wellness has attracted worldwide attention and resulted in development of innovative formulations. Turmeric latte is one such formulation. However, an in-depth study on its physicochemical properties and oral bioavailability has not been conducted as yet. We present a ready-to-use turmeric latte by microencapsulating turmeric oleoresin (TO) with a blend of gum acacia, maltodextrin, and dairy whitener (DW) with bioenhancers by spray drying. The microencapsulated powder obtained exhibited >95% encapsulation efficiency, desired curcumin content, of 539.98 ± 6.56 to 706.40 ± 5.25 mg/100 g, wettability time below 40 s, and dispersibility above 95%. Turmeric latte released >95% of curcumin at pH 1.2 HCl with 0.1% Tween 80, which was ascribed in part to curcumin amorphization as evidenced by DSC and XRD. Turmeric latte demonstrated superior antioxidant activity with 4.2-fold enhanced permeability through non-everted rat intestine and 4.9-fold higher oral bioavailability in rats confirming bioenhancement.


Assuntos
Curcuma , Curcumina , Animais , Disponibilidade Biológica , Leite , Extratos Vegetais , Pós , Ratos
16.
Nutr Cancer ; 74(2): 724-734, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33840317

RESUMO

Angiogenesis is a complex physiological process that cannot be treated with single agent therapy. Several edible fungi have been known to encompass bioactive compounds, and are promising sources of multi-component drugs. One such widely consumed edible fungi is Cantharellus cibarius, which has been explored for its biological activities. The present study focused on assessing the anti-angiogenic activity of petroleum ether and ethanol extracts of C. cibarius using chick chorioallantoic membrane (CAM) assay. Both the extracts showed a dose-dependent response which was compared with the anti-angiogenic activity of the positive controls silibinin, and lenalidomide. The extracts were also studied for their lipoxygenase (LOX) inhibitory potential and compared to ascorbic acid as the positive control. The IC50 values of the petroleum ether extract, ethanol extract, and ascorbic acid for LOX inhibition assay were 135.4, 113.1, and 41.5 µg/mL, respectively. Although both the extracts showed similar responses in CAM assay, ethanol extract proved to be more potent in LOX inhibition assay. Finally, the extracts were investigated for their chemical composition using GC-MS. A correlation between LOX inhibition and anti-angiogenic potential was established at the molecular level. A meticulous literature search was carried out to correlate the biochemical composition of the extracts to their anti-angiogenic activity.


Assuntos
Basidiomycota , Extratos Vegetais , Inibidores da Angiogênese/farmacologia , Basidiomycota/química , Lipoxigenase , Extratos Vegetais/química , Extratos Vegetais/farmacologia
17.
Food Funct ; 12(17): 7964-7974, 2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34254624

RESUMO

Ginger oleoresin was emulsified with gum acacia and encapsulated in a sucrose matrix by co-crystallization. The increased void space and surface area of sucrose provided a porous base for the incorporation of oleoresin. This co-crystallization led to modification from crystalline to irregular agglomerates, as evident from X-ray diffraction and differential scanning calorimetry. Hygroscopicity, water sorption isotherms and water activity demonstrated changes due to the change in crystallinity of sucrose. The active components such as [6]-, [8]- and [10]-gingerols and [6]-shogaol were quantified by HPLC. The encapsulation efficiency of [6]-gingerol was 45.59%. The storage kinetics at different relative humidity levels and temperatures indicated [6]-gingerol to be the most stable among the gingerols studied. A temperature of 25 °C and relative humidity of 33% proved to be the best storage conditions for the ginger flavoured sugar cubes. Thus, co-crystallization for the encapsulation of ginger oleoresin serves a dual purpose, i.e., protection and a mode of delivering a spicy flavour.


Assuntos
Extratos Vegetais/química , Sacarose/química , /química , Catecóis/química , Cromatografia Líquida de Alta Pressão , Cristalização , Composição de Medicamentos , Estabilidade de Medicamentos , Armazenamento de Medicamentos , Álcoois Graxos/química , Cinética , Temperatura
18.
Environ Res ; 194: 110609, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33340502

RESUMO

Zinc oxide particles (ZnOPs) of both nanometer and sub-micron sizes are important components of high demand consumer products such as sunscreen, paint, textile, food packaging, and agriculture. Their ultimate discharge in the aquatic ecosystem is nearly unavoidable. For sustainable use of ZnOPs, there is an urgent need to assess its ecotoxicity using ecological indicator organisms. Moina macrocopa, an important component of the aquatic ecosystem is one such less explored indicator organism. In the present investigation, ZnOPs of two different sizes (250 ± 20 and 500 ± 50 nm) were selected for risk assessment as most of the previous reports were based on the use of 10-100 nm ZnOPs. ZnOPs of 500 nm were more lethal than that of 250 nm size, with respective LC50 of 0.0092 ± 0.0012 and 0.0337 ± 0.0133 mg/L against M. macrocopa after 48 h of exposure. We further used a sublethal concentration of 500 nm (0.00336 mg/L) and 250 nm (0.00092 mg/L) ZnOPs followed by measurement of enzymatic biomarkers of toxicity (acetylcholinesterase, digestive enzymes, antioxidant enzymes). A size-dependent variation in enzymatic response to 250 and 500 nm ZnOPs was seen. Exposure to ZnOPs inhibited acetylcholinesterase and digestive enzymes (trypsin, amylase), and elevated antioxidant enzymes (catalase, glutathione S-transferase) levels. The exposure also decreased the superoxide dismutase activity and increased that of ß-galactosidase. Microscopic investigation revealed the accumulation of ZnOPs in the digestive tract of M. macrocopa that possibly disrupts enzyme activities. The present study will contribute to establishing regulatory policy on the maximum permissible limit of ZnOPs in different water bodies.


Assuntos
Cladóceros , Poluentes Químicos da Água , Óxido de Zinco , Animais , Ecossistema , Dose Letal Mediana , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade , Óxido de Zinco/toxicidade
19.
Food Chem ; 335: 127642, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-32739814

RESUMO

Spray drying is the most commonly used encapsulation technique to stabilize sensitive bioactive compounds and sometimes enhances their performance. Vitamin B12 and vitamin D3 deficiencies are reported worldwide and co-encapsulation can provide a combined solution to this problem. The present work aimed at encapsulation of vitamin B12 and D3 by spray drying using experimental design to optimize wall material combination. Optimized solution obtained from the experimental design (gum acacia : Hi-Cap® 100 : maltodextrin = 38:60:2) provided spherical particles with smooth surface and better stability of both the vitamins. In vitro release mechanism showed a slow release for both the vitamins after encapsulation. The optimized co-encapsulated microcapsules obtained in this work showed an improved bioavailability of 151% for vitamin B12 and 109% for vitamin D3 in comparison with the control. This study delivered a suitable medium to provide water soluble vitamin B12 and fat soluble vitamin D3 in single product.


Assuntos
Colecalciferol/química , Composição de Medicamentos/métodos , Vitamina B 12/química , Disponibilidade Biológica , Cápsulas/química , Goma Arábica/química , Cinética
20.
Food Res Int ; 137: 109699, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33233273

RESUMO

Fungi are a huge source of unexplored bioactive compounds. Owing to their biological activities, several fungi have shown commercial application in the health industry. Tuber aestivum Vittad. is one such edible fungi with an immense scope for practical biological applications. In the present study, the anti-angiogenic activity of petroleum ether and ethanol extracts of T. aestivum was investigated using the chick chorioallantoic membrane assay and compared to the positive controls silibinin and lenalidomide. Both the extracts showed a dose-dependent anti-angiogenic response. The extracts were also assessed for their anti-inflammatory potential by lipoxygenase-inhibition assay. The IC50 values for LOX inhibition assay, computed by the Boltzmann plot, were 368.5, 147.3 and 40.2 µg/mL, for the petroleum ether extract, ethanol extract, and the positive control ascorbic acid, respectively. The ethanol extract of T. aestivum showed superior anti-angiogenic and anti-inflammatory activity than the petroleum ether extract. Compositional investigation of the extracts by GC-MS revealed the presence of various bioactive compounds. The compounds were correlated to their anti-angiogenic and anti-inflammatory activity based on a meticulous literature search.


Assuntos
Ascomicetos , Anti-Inflamatórios/farmacologia , Extratos Vegetais/farmacologia , Solventes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...